Introduction to C#
obiect-oriented programming

Object Oriented Programming




Native support for

— Namespaces

— Versioning

— Attribute-driven development

« Power of C with ease of Microsoft Visual Basic®
* Minimal learning curve for everybody

 Much cleaner than C++

« More structured than Visual Basic

* More powerful than Java



C# — The Big ldeas

« A component oriented language
* The first “component oriented” language in

the C/C++ family

— In OOP a component is: A reusable program that can be
combined with other components in the same system to form an

application.
— They can be deployed on different servers and communicate
with each other

« Enables one-stop programming
— No header files, IDL, etc.
— Can be embedded in web pages



Value and Reference Types

* Value types
— Directly contain data
— Cannot be null
« Reference types
— Contain references to objects
— May be null

int i = 123;
string s = "Hello world";

i 123"
s | —— " "Hello world"




Value and Reference Types

* Value types

— Primitives Int I,
— Enums enum State { Off, On }
— Structs struct Point { int X, y; }
« Reference types
— Classes class Foo: Bar, IFoo {...}
— Interfaces Interface IFoo: IBar {...}
— Arrays string[] a = new string[10];

— Delegates delegate void Empty();



Value and Reference Types

Single inheritance
Multiple interface implementation

Class members

— Constants, fields, methods, properties, indexers,
events, operators, constructors, destructors

— Static and instance members

— Nested types

Member access

— Public, protected, internal, private



Value and Reference Types

« Like classes, except
— Stored in-line, not heap allocated
— Assignment copies data, not reference
— No Iinheritance
* |deal for light weight objects
— Complex, point, rectangle, color
— Int, float, double, etc., are all structs
* Benefits
— No heap allocation, less GC pressure
— More efficient use of memory



Value and Reference Types

class CPoint { int x, y; ... }
struct SPoint { int x, y; ... }
CPoint cp new CPoint (10, 20);

SPoint sp

S
P g

o I
II!!II
II!!II

new SPoint (10, 20);




Value and Reference Types

« Everything is an object
— All types ultimately inherit from object

— Any piece of data can be stored, transported, and
manipulated with no extra work




Value and Reference Types

* Boxing
— Allocates box, copies value into it
* Unboxing
— Checks type of box, copies value out




Language Features

* Benefits
— Eliminates “wrapper classes”
— Collection classes work with all types
— Replaces OLE Automation's Variant

* Lots of examples in .NET framework




Classes

« Way of organizing data
« Can have:

— member data
— member methods

Class clsName
{
modifier dataType varName;
modifier returnType methodName (params)
{
statements;
return returnVal;



Example of the class

namespace Sample

{
using System;
public class Helloworld
{
public Helloworld(
{
}
public static int Main(string[] args)
{
console.writeLine("Hello world!™);
return O;
}
}
}



Example of the class

using System;
namespace ConsoleTest

{

public class Class1

{

public string FirstName = "Kay";
public string LastName = "Connelly";

public string GetWholeName()
{

}

static void Main(string[] args)

{

return FirstName +" " + LastName;

Class1 myClassinstance = new Class1();

Console.WriteLine("Name: " + myClassinstance.GetWholeName());

while(true) ;




Base Classes

Synonymous with Superclass

Derived Classes are created from Base classes.
Base classes may also be derived classes
Keywords

— private

— public

— Internal

— protected
— virtual



Derived Classes

« Synonymous with Subclass

« Single Inheritance

« Extend base class functionality
* Replace base class functionality
* Augment existing functionality

« Keywords
— private
— public
— Internal
— protected
— override
— base
— sealed



Base & Derived Classes




Abstract Classes

A base class that can not be created
 Must be overridden

« Keywords
— private
— public
— Internal
— protected
— virtual
— abstract (class and member level)



Abstract & Derived Classes




INEIEES

* Multiple inheritance

« Can contain methods, properties, indexers and
events

* Provides polymorphic behavior
* Does not represent an ‘is-a’ relationship
« Represents a contract between classes




INEEES




INEIEES

« |Comparable
* |[Enumerable and IEnumerator
» |Formattable
 |List

* |Cloneable

* [Component

« |DataErrorinfo




Delegates

* Object oriented function pointers

« Multiple receivers
— Each delegate has an invocation list
— Thread-safe + and - operations

 Foundation for framework events




Delegates




Custom Events

« Event signature and firing logic

« Handling the Event




Predefined Events

« Define and register Event Handler




Operator Overloading

 Allows for the specification of an operator in the
context of a class you have defined.

* Binary Operators

* Unary Operators

« Implicit type Conversions

« EXplicit type conversions

* Only avallable in C#, not VB.NET




Operator Overloading




Operator Overloading

* Binary Operators
—+-*[W&|N<<>>==l=><>=<=

* Unary Operators
— 4+ -~ ++ -



Language Features

« Overlooked in most languages
— C++ and Java produce fragile base classes
— Users unable to express versioning intent

« C# allows intent to be expressed
— Methods are not virtual by default

LN 1

— C# keywords “virtual”, “override” and “new”
provide context

« C# can't guarantee versioning
— Can enable (e.g., explicit override)
— Can encourage (e.g., smart defaults)



Language Features




Summary

 C# builds on the .NET Framework
component model

* New language with familiar structure

— Easy to adopt for developers of C, C++,
Java, and Visual Basic applications

* Fully object oriented
* Optimized for the .NET Framework



Thanks for your attention!

Object Oriented Programming




