
Introduction to C#

obiect-oriented programming

Why C# ?

• Native support for

– Namespaces

– Versioning

– Attribute-driven development

• Power of C with ease of Microsoft Visual Basic®

• Minimal learning curve for everybody

• Much cleaner than C++

• More structured than Visual Basic

• More powerful than Java

C# – The Big Ideas

• A component oriented language

• The first “component oriented” language in
the C/C++ family

– In OOP a component is: A reusable program that can be
combined with other components in the same system to form an
application.

– They can be deployed on different servers and communicate
with each other

• Enables one-stop programming
– No header files, IDL, etc.

– Can be embedded in web pages

Value and Reference Types
Definition

• Value types
– Directly contain data

– Cannot be null

• Reference types
– Contain references to objects

– May be null

int i = 123;
string s = "Hello world";

123i

s "Hello world"

Value and Reference Types
Example

• Value types

– Primitives int i;

– Enums enum State { Off, On }

– Structs struct Point { int x, y; }

• Reference types

– Classes class Foo: Bar, IFoo {...}

– Interfaces interface IFoo: IBar {...}

– Arrays string[] a = new string[10];

– Delegates delegate void Empty();

Value and Reference Types
Classes

• Single inheritance

• Multiple interface implementation

• Class members

– Constants, fields, methods, properties, indexers,
events, operators, constructors, destructors

– Static and instance members

– Nested types

• Member access

– Public, protected, internal, private

Value and Reference Types
Structs

• Like classes, except

– Stored in-line, not heap allocated

– Assignment copies data, not reference

– No inheritance

• Ideal for light weight objects

– Complex, point, rectangle, color

– int, float, double, etc., are all structs

• Benefits

– No heap allocation, less GC pressure

– More efficient use of memory

Value and Reference Types
Classes and Structs

class CPoint { int x, y; ... }

struct SPoint { int x, y; ... }

CPoint cp = new CPoint(10, 20);

SPoint sp = new SPoint(10, 20);

10

20
sp

cp

10

20

CPoint

Value and Reference Types
Unified Type System

• Everything is an object

– All types ultimately inherit from object

– Any piece of data can be stored, transported, and
manipulated with no extra work

Stream

MemoryStream FileStream

Hashtable doubleint

object

Value and Reference Types
Boxing and Unboxing

• Boxing
– Allocates box, copies value into it

• Unboxing
– Checks type of box, copies value out

int i = 123;

object o = i;

int j = (int)o;

123i

o

123

System.Int32

123j

Language Features
Unified Type System

• Benefits
– Eliminates “wrapper classes”

– Collection classes work with all types

– Replaces OLE Automation's Variant

• Lots of examples in .NET framework

string s = string.Format(

"Your total was {0} on {1}", total, date);

Hashtable t = new Hashtable();

t.Add(0, "zero");

t.Add(1, "one");

t.Add(2, "two");

Classes

• Way of organizing data

• Can have:
– member data

– member methods

Class clsName

{

modifier dataType varName;

modifier returnType methodName (params)

{

statements;

return returnVal;

}

}

Example of the class

namespace Sample

{
using System;

public class HelloWorld
{

public HelloWorld()
{
}

public static int Main(string[] args)
{

Console.WriteLine("Hello World!");
return 0;

}
}

}

Constructor

Example of the class

using System;

namespace ConsoleTest

{

public class Class1

{

public string FirstName = "Kay";

public string LastName = "Connelly";

public string GetWholeName()

{

return FirstName + " " + LastName;

}

static void Main(string[] args)

{

Class1 myClassInstance = new Class1();

Console.WriteLine("Name: " + myClassInstance.GetWholeName());

while(true) ;

}

}

}

Base Classes
Definition

• Synonymous with Superclass

• Derived Classes are created from Base classes.

• Base classes may also be derived classes

• Keywords
– private

– public

– internal

– protected

– virtual

Derived Classes
Definition

• Synonymous with Subclass

• Single Inheritance

• Extend base class functionality

• Replace base class functionality

• Augment existing functionality

• Keywords
– private

– public

– internal

– protected

– override

– base

– sealed

Base & Derived Classes
Syntax

public class Mammal

{

public void Breathe() {…}

public virtual void Walk() {…}

public virtual void Eat() {…}

}

public class Dog: Mammal

{

override public void Walk() {…}

public string Bark() {…}

}

Abstract Classes
Definition

• A base class that can not be created

• Must be overridden

• Keywords
– private

– public

– internal

– protected

– virtual

– abstract (class and member level)

Abstract & Derived Classes
Example

public abstract class Mammal

{

public void Breathe() {…}

public virtual void Walk() {…}

public virtual void Eat() {…}

public abstract bool Swim()

}

public class Dog: Mammal

{

override public void Walk() {…}

public string Bark() {…}

override public bool Swim() {return false;}

}

Interfaces
Definition

• Multiple inheritance

• Can contain methods, properties, indexers and
events

• Provides polymorphic behavior

• Does not represent an ‘is-a’ relationship

• Represents a contract between classes

Interfaces
Syntax

interface IDataBound

{

void Bind(IDataBinder binder);

}

class EditBox: Control, IDataBound

{

void IDataBound.Bind(IDataBinder binder) {...}

}

Interfaces
Interfaces in the .NET Framework

• IComparable

• IEnumerable and IEnumerator

• IFormattable

• IList

• ICloneable

• IComponent

• IDataErrorInfo

Delegates
Definition

• Object oriented function pointers

• Multiple receivers
– Each delegate has an invocation list

– Thread-safe + and - operations

• Foundation for framework events

delegate void MouseEvent(int x, int y);

delegate double Func(double x);

Func MyFunc = new Func(Math.Sin);

double x = MyFunc(1.0);

Delegates
Syntax

public delegate void MouseEvent(int x, int y);

public delegate double Func(double x);

Func MyFunc = new Func(Math.Sin);

double x = MyFunc(1.0);

Custom Events
Creating, Firing and Handle

• Event signature and firing logic

• Handling the Event

public class MyClass

{

public delegate void MyHandler(EventArgs e);

public event MyHandler MyEvent;

if (MyEvent != null) MyEvent(e);

}

public event EventHandler Click;

MyClass obj = new MyClass();

obj.MyEvent += new MyClass.MyHandler(MyFunc);

Predefined Events
System.EventHandler

• Define and register Event Handler

public class MyForm: Form
{

Button okButton;

public MyForm()
{

okButton = new Button(...);
okButton.Caption = "OK";
okButton.Click += new EventHandler(OkButtonClick);

}

void OkButtonClick(object sender, EventArgs e)
{

ShowMessage("You pressed the OK button");
}

}

Operator Overloading
Definition

• Allows for the specification of an operator in the

context of a class you have defined.

• Binary Operators

• Unary Operators

• Implicit type Conversions

• Explicit type conversions

• Only available in C#, not VB.NET

Operator Overloading
Syntax

public struct DBInt
{

……….

public static DBInt operator +(DBInt x, DBInt y) {...}

public static implicit operator DBInt(int x) {...}
public static explicit operator int(DBInt x) {...}

}

DBInt x = 123;
DBInt y = DBInt.Null;
DBInt z = x + y;

Operator Overloading
Binary and Unary Operators

• Binary Operators

– + - * / % & | ^ << >> == != > < >= <=

• Unary Operators

– + - ! ~ ++ --

Language Features
Versioning

• Overlooked in most languages

– C++ and Java produce fragile base classes

– Users unable to express versioning intent

• C# allows intent to be expressed

– Methods are not virtual by default

– C# keywords “virtual”, “override” and “new”
provide context

• C# can't guarantee versioning

– Can enable (e.g., explicit override)

– Can encourage (e.g., smart defaults)

class Derived: Base // version 2b

{

public override void Foo() {

base.Foo();

Console.WriteLine("Derived.Foo");

}

}

class Base // version 1

{

}

class Base // version 2

{

public virtual void Foo() {

Console.WriteLine("Base.Foo");

}

}

Language Features
Versioning

Summary

• C# builds on the .NET Framework

component model

• New language with familiar structure

– Easy to adopt for developers of C, C++,

Java, and Visual Basic applications

• Fully object oriented

• Optimized for the .NET Framework

Thanks for your attention!

Slide 35

