
Introduction to

REST APIs

Definitions

Slide 2

What is a Web API?

API stands for Application Programming Interface. A web API allows specifically

exposed methods of an application to be accessed and manipulated outside of the

program itself. Web APIs use web protocols (HTTP, HTTPS, JSON, XML, etc.). For

example, a web API can be used to obtain data from a resource (such as U.S. postal

service zip codes) without having to actually visit the application itself (checking

usps.com).

What is REST?

REST is short for Representational State Transfer. REST is a software

architectural style… a set of rules and conventions for the creation of an API.

A computer scientist by the name of Roy Fielding defined the principles of

REST in his 2000 PhD dissertation. Like any theoretical ideal, there are a lot

of practical exceptions to Fielding’s principles. But the principles of REST are

intended to make APIs and systems that are: efficient, scalable, simple,

reliable and modifiable (i.e. future-proof) among other things … all excellent

ideals!

The 6 constraints of REST (1)

Slide 3

1. Client-Server architecture – Simply put, RESTful systems separate the

systems responsible for storing and processing the data (the server) from the

systems responsible for collecting, requesting, consuming, and presenting the

data to a user (the client). This separation should be so distinct that the client

and server systems can be improved and updated independently each other.

Client Server

An upgrade to the client should not

necessitate an upgrade to the server… and

vice versa.

The 6 constraints of REST (2)

Slide 4

2. Statelessness – As far as the server is concerned, all client requests are

treated equally. There’s no special, server-side memory of past client activity.

The responsibility of managing state (for example, logged in or not) is on the

client. This constraint is what makes the RESTful approach so scalable.

Be advised! In REST each and every resource request is to convey the

application state. That means the state gets transferred with each request!

The 6 constraints of REST (3)

Slide 5

3. Cacheability – Clients and servers should be able to cache resource data that

changes infrequently. For example, there are 52 states and other jurisdictions

in the U.S.A. That’s not likely to change soon. So, it is inefficient to build a

system that queries a database of states each and every time you need that

data. Clients should be able to cache that infrequently updated date and web

servers should be able to control the duration of that cache.

4. Layered system – A client cannot tell whether it is connected directly to an

end server, or to an intermediary along the way. Intermediary servers can also

improve system scalability.

A

D

C

B

As far as the client is

concerned, only “A” exists!

The 6 constraints of REST (4)

Slide 6

5. Code on demand (Optional) – Servers can temporarily extend or customize

the functionality of a client by transferring executable code. This is constraint

is optional.

6. Uniform Interface – This constraint is comprised of 4 additional “constraints”

or “principles”. Taken together, these 4 additional principles basically require

the API to be consistent with HTTP standards and self describing. That means

that, in theory, given an API’s web address, a server should respond with all

the available actions and resources at that address. Each subsequent server

response should then contain enough information to take additional actions on

the resource. This constraint is very rarely realized in practice!

A

The marriage of REST and HTTP

Slide 7

Roy Fielding was also one of the

principle authors of the HTTP

specification. Fielding created the REST

constraints with HTTP in mind.

Part of the power of the REST

architectural style is that HTTP was

already widely in use before the REST

constraints were formally defined.

In theory, the six REST constraints we

just reviewed could be applied to other

protocols, but in practice RESTful APIs

are HTTP based.

RESTful API conventions – HTTP Methods

Slide 8

* GET – The get method is used to retrieve data from a resource. According to

RESTful conventions, GETs are safe to execute over and over. For example: It is

safe to run the following GET request as many times as you want:

https://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Daps&field-

keywords=robot

* POST – The POST method would be used to create a data record, or initiate an

action. Imagine each POST as being a request to make a amazon purchase. You

would want to be careful about doing that more times than necessary!

PUT -- The PUT method exists in HTTP. It should be used to update an existing

data record.

DELETE – The DELETE method exists in HTTP. It should be used to delete a data

record.

* These are the only two methods you will use this semester.

https://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Daps&field-keywords=robot

RESTful API conventions – HTTP Status Codes

Slide 9

Every HTTP request results in a status code to be sent back to the client.

Request

2xx Status codes indicate success. The most common status code is 200, OK.

Server
Client

Status

Code

3xx Status codes indicate that the client needs to do something else to complete

the request. Usually this means making the request from a different location.

Status code 301 means the resource has been permanently moved somewhere

else.

HTTP Status Codes continued

Slide 10

4xx Status codes indicate a client error. That is, the client sent a request that did

not make sense.

A classic example of this is “404 Not Found”. Try it! Go to

https://www.google.com/bad then try going to https://www.temple.edu/bad Notice

that both pages report the code 404. That’s not just a coincidence.

The internet is built on standards like HTTP and these error codes are part of that

standard.

5xx Status codes indicate a server error. That means that the request made by the

client appears to be fine. But the server is experiencing some difficulty.

A server experiencing some difficulty might report “500 Internal server error”

More thorough documentation of the HTTP status codes can be found here:

https://www.restapitutorial.com/httpstatuscodes.html

https://www.google.com/bad
https://www.temple.edu/bad
https://www.restapitutorial.com/httpstatuscodes.html

An Example

1

1

Client
Server

An Example

1

2

Server

GET

https://www.instagram.com/profile?user=somemadeupuser

Client

200 OK { ... }

OR

404 Not Found

An Example

1

3

Server

POST

https://www.instagram.com/comment

{ picture_id: <id>, comment: "💦" }

Client
200 OK

{ comment_id: <id>,

commenter_id: <id>,

picture_id: <id>,

comment: "💦" }

An Example

1

4

Server

POST

https://www.instagram.com/comment

{ picture_id: 0, comment: "💦" }

Client
404 Not Found

An Example

1

5

Server

POST

https://www.instagram.com/comment

{ picture_id: <id>, comment: "" }

Client
400 Bad Request

Comment text must not be

empty

A quick reality check…

Slide 16

The REST design constraints are good in theory. However, in practice no

one … not even the largest technology companies … implements them

perfectly. Three of the most common constraint violations follow.

Wrinkles and exceptions

Slide 17

1. Abuse of the GET method.

Again, GET is assumed to be a safe operation that never modifies the state of the

resource. However, it has been often contorted into performing other functions…

for example:

http://exampleapi.xyz?action=ADD&productname=Widget

2. APIs are not self-documenting

This RESTful ideal has yet to be fully realized. Even so, some API providers don’t

even try!

3. State matters – In the REST design, the burden of managing state is on the client.

That, however, raises many security concerns. API providers like the efficiency

gains made possible by REST … but there is no one consistent approach to

managing state.

Next class, we will explore one of those approaches.

Thanks for your attention!

Slide 18

