
Introduction to

SQL

General scheme of presentation

– SQL

• Introduction, history, concepts

• DML

• DDL

• DCL

• Advanced topics:

- 2 -

SQL - Introduction

• Structural Query Language is a standardized language for

Databases. Basically, It’s a declarative language (not

procedural).

• SQL is born in 1974 (called SEQUEL). SQL has been

standardized in different versions (see next slide) by ANSI

and ISO.

• The implementations of SQL for the different RDBMS

(Oracle, Sybase, SQL Server, Ms-Access, mySQL) are not

always standard.

• As many languages, SQL is defined by a dictionary and a

grammar.

• In this training session, we will use the SQL92 syntax

(SQL2).
- 3 -

SQL history

• Extract of http://en.wikipedia.org/wiki/SQL

- 4 -

http://en.wikipedia.org/wiki/SQL

SQL

 SQL is composed of different sub-languages:

 DDL : data definition language

 DML : data manipulation language and transaction control

 DCL : data control language, definition of rights

 To learn those languages, we first have to cover some

items:

 naming

 data types

 literal values (constants)

 functions
- 5 -

SQL Naming

 You will mainly define names for

 Table & views

 Table fields & aliases

 There are some naming limits (it may differ from a DB to another):

 Usable chars : [A-Z] for the first char, [A-Z0-9_] for next chars

 Length of names : 30 chars for Oracle and DB2 fields names

 Character case in not significant.

 You can’t use reserved names (tokens of the SQL language).

 You should respect supplementary constraints in naming:

 Public conventions: for example, do not prefix names of fields with the
name of the table.

 Specific conventions.

- 6 -

SQL – Data types

Main data types:

 CHAR(len): fixed-length string

 VARCHAR2: variable-lengh string

 NUMBER(precision,scale): decimal or float
number. Precision = total number of digits.
Scale = number of digits after the decimal.

 DATE : calendar date (in Oracle, this type will
include the time).

 TIMESTAMP: Date and time

 INTERVAL : interval of time

 BLOB: Binary large object
- 7 -

SQL – constants (literals)

• Numeric constants: written as usually; for example : 123 or -1245.63

• String constants: enclosed in simple quotes; for example ‘hello world’. If
you have to include a simple quote in your string, you have to write two
consecutive simple quotes; for example : ‘I can’’t do it!’

• Date constants: DATE ‘yyyy-mm-dd’; example : DATE ‘2001-12-13’. There
is no syntax for a date literal with a time, you may use the “TO-DATE”
function to convert a string; for example: TO_DATE('98-DEC-25 17:30','YY-
MON-DD HH24:MI')

• Timestamp constants: TIMESTAMP ‘yyyy-mm-dd HH:MM:SS’

– ; example TIMESTAMP ‘2007-01-01 12:34:56'

• Interval literal: INTERVAL ‘n[-n]’ [(YEAR|MONTH)] [‘(‘n’)’] [TO MONTH].
Example: INTERVAL '123-2' YEAR(3) TO MONTH

- 8 -

SQL built-in functions

 SQL defines standard functions. Each RDBMS may offer
additional functions.

We may distinguish different types of functions:

 Get context info: current_time, current_date,
current_timestamp, current_user, session_user,
system_user. (not covered by Oracle)

 Aggregate functions: max, min, count, avg, sum

 Functions to manipulate strings: char_length,
position(starting_string IN search_string),, lower, upper,
concatenate, trim, …

 Date & time functions: year, month, day, hour, minute,
second, …

 Mathematics functions: sin, cos, ceil, floor, log, ln,…

 Conversion of types: cat (expression as type)
- 9 -

SQL - DML

• Select : select rows of one table or of two or

more related tables.

• Insert : insert a new row in a table.

• Delete : delete one or more rows in a table.

• Update : update one or more rows in a table.

- 10 -

SQL DML – Query syntax

- 11 -

SQL DML - Query

Structure of our presentation on the queries:

 Simple queries

Ordering results (order by)

 Sub-queries

 Distinct results

 Aggregations

Multi-tables queries

- 12 -

SQL DML - Query

• Main elements of the syntax of a simple query:

select selectList from tableName where clause

• Some examples:

select * from cld01;

select NOMCLI, TELPRI from cld01;

select NOMCLI, TELPRI from cld01 where TELPRI

not like ' %';

- 13 -

SQL SIMPLE QUERY – select list

• selectList = “*” or “fieldName (, fieldName)*” or function(fieldName) or
calculation expression or a literal.

• “fieldName” is here the name of one of the fields defined in the target table
or the name of a pseudo field.

• You may defined aliases for column names, syntax: fieldListElement as
aliasName

• Examples:

select NOMCLI, TELPRI, ROWNUM from cld01

select '++', NOMCLI, SUBSTR(NOMCLI,1,1) from cld01

select NOMCLI, SUBSTR(NOMCLI,1,1) as ini from cld01

• Trick: to see the fields defined in a table, use “desc tableName”.

- 14 -

SQL SIMPLE QUERY – select list -

operators

In SQL select list and in SQL clauses, you may

use some operators:

 mathematical operators: +, -, *, /, %

 string concatenation: ||

• Examples:

select DATMAJ-DATCRT as daysBeforeCreationAndLastUpdt,
DATCRT, DATMAJ, NOMCLI from cld01

select nomcli || ‘ ‘ || prncli as nomprncli from cld01

SQL SIMPLE QUERY – where

clause

Where clause = WHERE condition ((AND|OR)

condition)?

Simple Condition = (NOT)? fieldName operator (

fieldName | litteralValue)?

Operators:

o Comparison: =, <>, <, >, <=, >=

o Range test: testExpr (NOT)? BETWEEN

lowValExpr AND highValExpr

o Pattern matching condition: LIKE pattern

o wildcards chars: ‘%’, _ - You may use an escape

char but you have to define it.
- 16 -

SQL SIMPLE QUERY – where

clause ...

• Examples:

select NOMCLI from cld01 where NOMCLI LIKE 'D_s%‘

select NOMCLI from cld01 where NOMCLI LIKE '%_%' ESCAPE '\'

select DATCRT, NOMCLI from cld01 where DATMAJ-DATCRT =0

- 17 -

SQL SIMPLE QUERY – where

clause …

• To test a “null” value; use “is null” expression or

“is not null” or “not fieldName is null”.

• Example:

select NOMCLI from cld01 where NOMCLI is null

- 18 -

SQL SIMPLE QUERY – where

clause …

• To group conditions, you will use “and” or “or”

operators and parenthesis to modify default

priority in the order of evaluation of operators.

• Example:

select mnecli, nomcli, nomalp from CLD01

where (mnecli like 'R%' or nomcli like 'R%')

and length(NOMCLI)=9;

- 19 -

SQL SIMPLE QUERY – ordering

results

• Syntax: select … order by expression (,

expression (ASC|DESC)?)*

• Examples:

select mnecli, nomcli, nomalp

from CLD01

order by nomalp;

select nomalp

from CLD01

order by DATCRT DESC, DATMAJ;

- 20 -

SQL Query & sub-queries

• SELECT … WHERE fieldName IN (SELECT fieldName from …)

• SELECT … WHERE fieldName NOT IN (SELECT fieldName from …)

• SELECT … WHERE (NOT)? EXISTS (SELECT …)

• SELECT … WHERE fieldName comparisonOp (SELECT fieldName from
…)

• SELECT ... WHERE fieldName comparisonOp (ANY|ALL) (SELECT
fieldName from ...)

• Examples:

select nomalp from CLD01

where length(nomalp) = (select max(length(nomalp)) from CLD01)

select count(*) from CLD01

where numcli not in(select numcli from CLD02)

select count(*) from CLD01 x

where exists(select * from CLD02 where numcli=x.numcli)
- 21 -

SQL Query - Distinct results

• Syntax: select distinct …

• Examples:

select distinct devref

from CLD01

select distinct codbic, numprc

from CLD01

- 22 -

SQL Query - Aggregations

• General Syntax: select … from … group by ….

(having condition)

• In the field list and in the “having” condition, you

have to use aggregation functions except for the

fields on which the group is formed.

• You may group on several columns.

• You may add a condition to filter groups with the

“having condition”.

- 23 -

SQL Query - Aggregations

• Examples:

select devref, count(*) from CLD01 group by devref

select devref, count(*) as c from CLD01

group by devref order by c

select devref, max(monact) as M, sum(monact) as S, (max(monact)/

sum(monact)*100) as R from CLD01

group by devref having sum(monact)<>0

select devref, nbremp, max(monact) as M, count(*) as c from CLD01

group by devref,nbremp

having (sum(monact)<>0)and (nbremp>1)

select devref, max(nbremp), max(monact) as M, count(*) as c

from CLD01 where nbremp > 1

group by devref having (sum(monact)<>0)
- 24 -

SQL Query – Aggregate functions

defined in SQL
 SQL defines some aggregate functions:

 AVG : average of values, only for numeric types

 COUNT : number of values

 MAX : maximum value

 MIN : minimum value

 SUM : sum of values, only for numeric types

 Null values are ignored in aggregate functions. In oracle, you mask ask to

consider null values with a NVL function (by example avg(nvl(sold,0))).

 With the count function, you may use the “count(*)” syntax to count the

number of rows.

 If you want to eliminate duplicates values before the execution of the

aggregate function, you will use the syntax “fct(distinct fieldName)”.
- 25 -

SQL Query – usage of aggregate

functions

• You may use aggregate functions in SQL

queries having no “group by” clause. You have

then a group composed of all records returned

by your select.

• Example:

select count(*), sum(SOLPCD)

from CCD01

- 26 -

SQL Multi-tables queries (joins &

unions)
 Joins : rows of the result set have fields coming from two (or

more) tables.

 cartesian product (or cross join): it produces n * m rows (with n=

number of rows of table 1, m = number of rows of table 2).

 equi-join: returns only rows combining rows of the two tables

having same values in fields participating to the relation.

 left outer-join: all records of the left table are present in the

result set even if the right table has no corresponding record (in

this case, the fields coming from the right table have null values).

 right outer join: all records of the right table are present in the

result set even if the left table has no corresponding record (in

this case, the fields coming from the left table have null values).

 Unions: rows returned by two select with the same structure are

added.
- 27 -

SQL joins

 Select … from tbl1, tbl2

We obtain n * m rows (where n=number of rows

of tbl1 and m=number of rows of tbl2) with the

sum of fields of tbl1 and tbl2.

Select … from tbl1, tbl2 where

tbl1.fieldX=tbl2.fieldY

We obtain related rows of tbl1 and of tbl2 with

the sum of fields of tbl1 and tbl2.

Example :

select * from CLD01,CCD01

where CCD01.numcli = CLD01.numcli
- 28 -

SQL outer join

• As in inner join, we join 2 tables and we select

all records of the first table and corresponding

records of the second table. But here, if no

corresponding records exists in the second table

we nevertheless return a result record where

fields from the second table receive the null

value.

• Example:

select * from CCD01 left outer join CCD51

where CCD01.natenc=CCD51.natenc

SQL select – combination of sets:

Union, intersection, difference

We may ask the SQL engine to combine rows of
different queries:

 Union: combination of two or more queries; we
add rows of different queries giving compatible
fields.

 Intersect : combination of two or more queries;
we keep common rows of different queries
giving compatible fields.

 Except (standard SQL), minus (Oracle); we
keep only rows returned by the first query and
not by the second.

- 30 -

SQL select – combination of sets:

Union

• Union: combination of two or more queries; we
add rows of different queries giving compatible
fields.

• Syntax:

SELECT … UNION (ALL)? SELECT …

 Example:

select 'NoAdress' ST, numcli
from CLD01 X
where numcli not in(select numcli from CLD02)
union
select 'withAdresses' ST, numcli
from CLD01 X
where numcli in(select numcli from CLD02) order by 1

- 31 -

SQL select – combination of sets:

intersection

• Intersect : combination of two or more queries;
we keep common rows of different queries
giving compatible fields.

• Syntax: SELECT … INTERSECT SELECT …

• Example:

select numcli
from CLD01
intersect
select numcli
from CLD02

- 32 -

SQL select – combination of sets:

difference

• Except (standard SQL), minus (Oracle): we keep
only rows returned by the first query and not by
the second.

• Syntax: SELECT … EXCEPT/MINUS SELECT
…

• Example:

select numcli
from CLD01
minus
select numcli
from CLD02 - 33 -

SQL DML - INSERT

Two different syntaxes:

o SQL INSERT INTO tableName (fieldName (,

fieldName)*) VALUES (literal (, literal)*)

o SQL INSERT INTO tableName (fieldName (,

fieldName)*) select ...

Examples:

insert into AWE_COMPREV (company,year,quarter,revenue)

values('BMW', 2001, 'Q1',125);

insert into AWE_COMPREV values('BMW', 2001, 'Q1',125);

insert into AWE_COMPREV2 select * from AWE_COMPREV;

- 34 -

SQL DML - DELETE

• Syntax:

o DELETE FROM tableName (WHERE ...)?

• Example:

delete from AWE_COMPREV2

where company='IBM';

- 35 -

SQL DML - UPDATE

• Update the content of one or more fields of

all/selected records.

• Syntax:

UPDATE tableName SET fieldName = expression (,

fieldName = expression)* (WHERE ...)?

• Examples:

update AWE_COMPREV2

set revenue = revenue * 1.25;

update AWE_COMPREV2

set revenue = revenue * 1.25, COMPANY='BMW-BE'

where company='BMW';
- 36 -

SQL - DDL

With DDL, Data Definition Language, we can

create

 Schemas

 Tables with constraints

 Constraints

 Domains for values (not supported by Oracle,

we have to use user defined types instead).

- 37 -

SQL DDL

• Create/drop/alter table

• Create/drop view

• Create/drop index

• Create/drop schema

• Create/drop/alter domain

- 38 -

SQL DDL – Create table syntax

- 39 -

SQL DDL Create table syntax ...

- 40 -

SQL DLL - Create table - examples

create table employee(name varchar2(100), age int,

salary number, primary key (name)) ;

create table employeeAddr(emp_name varchar2(100),

country varchar2(30), city varchar2(30), street varchar2(200),

house_number int, foreign key (emp_name) references

employee)

create table cld01_1973 as select * from cld01 where datnai

like '1973%';

SQL DDL – Create view

• Syntax:

CREATE VIEW viewName (

columnName1,

columnName2,

…

) AS

sqlSelectStatement

• Example:

create view AWE_COMP_YEAR_REV as

select company,year,sum(revenue) as yearRev

from AWE_COMPREV

group by company,year;
- 42 -

Create index

• The create/drop index statements are not part of
the standard SQL but are used by Oracle and
DB2.

• Ask the creation of an index on one or more
fields of a table. You may specify an
uniqueness constraint.

• Basic syntax:

SQL DCL – Access control

 The SQL norm defines some security concepts:

 Each user receives privileges on database objects.

 Privileges are allowed actions : select, delete, insert,

update, reference (the right to add a reference to a row) ,

grant (the right to pass your rights)

 Privileges are given or removed using the SQL

grant/revoke instructions.

 Privileges are given to individual users or to everybody

(PUBLIC).

 When you create a new table, you are the owner of this

table and not any other user has access to it. Of course,

you may give privileges to other users.

SQL DCL - Grant

- 45 -

SQL DCL - Revoke

- 46 -

Transactions

• Different users use concurrently different
sessions. A single user can have more than one
session.

• A transaction is a sequence of SQL statements
that the RDBMS treats as a single unit of work

• In each session, the user can use successive
transactions (you can use only one transaction at
the same time in the same session). A transaction
is finished by a “commit” or a “rollback”. You can
also use savepoint/rollback to savepoint to isolate
parts of the transaction with the possibility to
“undo” only effects of statements in those parts. A
savepoint is a marker within a transaction that
allows for a partial rollback

Transactions

• The session can be configured to work in “auto-
commit” mode (On Oracle, with SQL Plus, you
modify the mode with the command “SET
AUTOCOMMIT (ON|OFF)” .

• Isolation levels & explicit locking will give the
behavior of concurrent sessions concerning the
not-committed modifications of the data.

Transactions – ACID properties

A transaction should guarantees some

properties:

 Atomicity: each transaction is validated (or

invalidated) as a all.

 Consistency: a consistent result is obtained a

the end of the transaction.

 Isolation: effects of other concurrent

transactions are not visible on each individual

transaction.

 Durability : effects of each transaction are

stored when the transaction is validated.

SQL – Transaction control

• Commit

• Rollback

• Savepoint <name>

• Rollback to savepoint <name>

• Set transaction

- 50 -

Necessity of isolation levels

Isolations levels offer different answers to

possible problems related to the concurency of

different transactions:

 Dirty read : you read data not already commited by

concurrent transactions.

 Non-repeatable read : in the same transaction, when

you do two times the same select, you can obtain

different results in already read records due to

committed updates from other transaction.

 Phantom read: in the same transaction, when you do

two times the same select with a where clause, you

can obtain more records due to the insertion of new

records from other transactions.
- 51 -

Isolation levels defined in SQL

 Serializable: the upper isolation level; no dirty

read, no non-repeatable read, no phantom read.

 Repeatable read: only phantom reads are

possible.

 Read commited: non repeatable reads and

phantom reads are possible.

 Read uncommitted: dirty reads, non-repeatable

reads, phantom reads are possible.

SQL Locking

 Automatically in function of the isolation level.

 Explicitly through:

– Select … from … for update

– LOCK TABLE <table_name> IN <lock_mode>

MODE [NOWAIT | WAIT <seconds>];

The lock remains until you close the current

transaction.

- 53 -

Triggers

• A trigger defines a set of actions that are

performed in response to an insert, update, or

delete operation on a specified table. When

such an SQL operation is executed, the trigger is

said to have been activated.

• CREATE TRIGGER <name> <action> ON

<table_name> <operation> <triggered_action>

• Example (for Oracle DBMS):

CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE

FOR EACH ROW

UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

System catalog

• The meta data used by the RDBMS to store information about
your tables, your views, your rights, … are consultable
through different tables or views:

DBMS Tables Columns Users Views Privileges

Oracle user_catalog user_tab_columns all_users user_views user_tab_privs

user_tables all_tab_columns all_views User_col_privs

all_tables User_sys_privs

user_synonyms

DB2 Schemata columns dbauth Views Schemaauth

Tables viewdep Tabauth

References Colauth

keycoluse

Programming with SQL

 Using direct SQL statements through a tool (for

example va SQL PLUS).

 Using embedded SQL in an host language (for

example SQL orders embedded in C code).

 Using SQL with an API (for example, via ODBC

or JDBC).

 Using SQL instructions in stored procedures (for

example, in PL/SQL for Oracle) – such

procedures can be launched by triggers or by

API calls.

 Using OR Mapping Tools

Stored procedures

• Stored procedures are written in a programming

language and executed by the RDBMS .

• Oracle can load and execute stored procedures

written in PL/SQL or in Java.

• DB2 has his own language similar to PL/SQL for

stored procedures

• The main advantage of using stored procedures

is to limit the network traffic and by this way to

obtain good performances.

Stored procedures

• A second advantage is the possibility to create a

separated layer (separated from the client

application) hiding the knowledge of the data

structure.

• Stored procedures can be executed by triggers,

by SQL queries (via PL/SQL functions), by API

calls.

Thanks for your attention!

Slide 59

